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Abstract
With the help of the Cho–Faddeev–Niemi–Shabanov decomposition of the
SU(2) Yang–Mills field, we find an integrable subsystem of SU(2) Yang–
Mills theory coupled to the dilaton. Here integrability means the existence of
infinitely many symmetries and infinitely many conserved currents. Further, we
construct infinitely many static solutions of this integrable subsystem. These
solutions can be identified with certain limiting solutions of the full system,
which have been found previously in the context of numerical investigations
of the Yang–Mills dilaton theory. In addition, we derive a Bogomolny bound
for the integrable subsystem and show that our static solutions are, in fact,
Bogomolny solutions. This explains the linear growth of their energies with
the topological charge, which has been observed previously. Finally, we discuss
some generalizations.

PACS numbers: 11.27.+d, 11.30.−j, 03.50.−z

1. Introduction

Pure Yang–Mills theory does not allow for static finite energy solutions, as follows from the
scale invariance of this theory. One simple way to circumvent this obstacle is to couple the
Yang–Mills Lagrangian to the dilaton field [1, 2]. The corresponding Lagrangian reads

L = 1
4

(
2∂µξ∂µξ − e−2κξF aµνF a

µν

)
(1)

where Fa
µν is the SU (2) Yang–Mills field strength, and we choose units such that the gauge

field coupling is equal to one. Further, ξ is the dilaton field and κ is the dilaton coupling
constant. A direct physical application of the above theory would require the inclusion of
further interactions (e.g., the coupling to gravity for a low-energy effective theory of string
theory), but in this paper we deal with the theory given by (1) for the sake of simplicity.

Static solutions of the Yang–Mills dilaton theory were first discussed in [1, 2], and
in these papers infinitely many unstable, sphaleron-type solutions were found numerically
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within a spherically symmetric ansatz. Further, in [2] an effectively abelian solution within
the spherically symmetric ansatz was found analytically, which provided a limiting case for the
numerical solutions. A similar analysis was performed in [3], this time for an ansatz with only
cylindrical symmetry. Again, sequences of infinitely many sphaleron solutions, labeled by a
winding number m, were found numerically, and infinitely many effectively abelian limiting
solutions characterized by the same winding number were constructed analytically. Further,
it was observed that the energies of the limiting solutions grow linearly with the winding
number m.

We shall find that all these effectively abelian limiting solutions belong to an integrable
submodel of Yang–Mills dilaton theory characterized by infinitely many symmetries and
infinitely many conserved currents, and that in this submodel there exists a Bogomolny bound,
explaining the linear growth of energy with winding number. Recently, further solutions with
only discrete symmetries (rotational symmetries of platonic bodies) have been investigated
numerically in [4].

Our paper is organized as follows. In section 2, we briefly review the Cho–Faddeev–
Niemi–Shabanov (CFNS) decomposition of the SU (2) Yang–Mills field. Then we use
this decomposition to define a submodel of Yang–Mills dilaton theory by restricting the
decomposition fields, and show that this submodel is integrable in the sense that it has infinitely
many symmetries and infinitely many conserved currents. In section 3 we use a separation of
variable ansatz for static configurations of the integrable submodel and show that the ordinary
differential equations (ODEs) obtained in this way can be solved by quadratures. The resulting
solutions are precisely the limiting solutions of [2, 3] with spherical and cylindrical symmetry,
respectively. In section 4 we show that there exists a Bogomolny bound for the integrable
submodel, and demonstrate that the solutions of section 3 are, in fact, Bogomolny solutions. In
section 5 we discuss some generalizations allowing for additional solutions of the integrable
submodel, and introduce some more general integrable Lagrangians, which are no longer
related to the Yang–Mills dilaton theory, but still have static field equations which can be
solved by quadratures. Section 6 contains our conclusions. In the appendix, we prove
that the two possible ways to derive the field equations of the integrable subsystem (restriction
to the subsystem already in the Lagrangian, on the one hand, or insertion of the restriction into
the field equations of the full Yang–Mills dilaton theory, on the other hand) really lead to the
same field equations.

2. The integrable subsystem

The Cho–Faddeev–Niemi–Shabanov (=CFNS) decomposition (see, e.g., [5–10]) expresses
the gauge field as a sum of three terms as follows:

Aa
µ = naCµ + εabcnb

µnc + Wa
µ, (2)

where na = (n1, n2, n3) is a unit vector in the SU(2) color space, Cµ is an abelian gauge
potential in the na direction in the color space and Wa

µ is orthogonal to na in the color space,
naWa

µ = 0. Further, na
µ ≡ ∂µna (spacetime indices on scalar fields will always denote partial

derivatives). In the following, we shall refer to the three terms at the rhs of equation (2) as the
C-term, the n-term and the W -term, respectively.

In order to guarantee the correct gauge transformation properties

δna = εabcnbαc δWa
µ = εabcWb

µαc δCµ = naαa
µ, (3)

under the gauge transformation,

δAa
µ = (Dµα)a ≡ αa

µ + εabcAb
µαc, (4)

2
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the following constraint has to be imposed,

∂µWa
µ + CµεabcnbWc

µ + naWb
µnb

µ ≡ 0. (5)

In addition, this constraint makes that the number of degrees of freedom of the gauge field and
of the decomposition matches.

We now want to restrict to a specific class of gauge fields where we set the W -term (the
valence field) equal to zero

Wa
µ = 0, (6)

i.e., we assume the restriction

Âa
µ = naCµ + εabcnb

µnc. (7)

This restriction is gauge invariant, because Wa
µ transforms homogeneously under gauge

transformations. Further, the restricted potential Âa
µ still transforms like a SU (2) gauge

potential under gauge transformations. The corresponding field strength is, nevertheless,
abelian; therefore the above restriction also provides a gauge invariant definition of the abelian
projection [11]. Note that this abelian projection is also compatible with the constraint (5).

In a first step, we further restrict to gauge potentials which are solely described by the
unit vector na , i.e., we set

Cµ = 0, Wa
µ = 0. (8)

This choice is no longer gauge invariant and also further reduces the number of degrees of
freedom. Later on we shall allow for the more general gauge potentials (7) with Cµ �= 0, and
we will also discuss in more detail the issue of gauge transformations; see section 5. It is
sometimes assumed that na describes the low-energy degrees of freedom of the Yang–Mills
field (which was in fact one motivation for the decomposition), but we shall not be concerned
with this here.

Inserting the decomposition (2) with the restriction (8) into the Yang–Mills dilaton
Lagrangian (1) we arrive at the Lagrangian

L = 1
4

(
2∂µξ∂µξ − e−2κξHaµνHa

µν

)
(9)

where

Ha
µν ≡ εabcnb

µnc
ν = naHµν, Hµν ≡ εabcnanb

µnc
ν. (10)

Remark. We shall use this Lagrangian (9) in section 3 to derive the corresponding Euler–
Lagrange equations. Here, of course, the question arises whether these equations are really
equivalent to the original Euler–Lagrange equations of the Yang–Mills dilaton theory after the
decomposition is inserted into these original equations. We prove in the appendix that this is
indeed the case.

For later convenience we prefer to replace the three-component unit vector field na by the
complex scalar field u via stereographic projection,

na = 1

1 + |u|2 (u + ū,−i(u − ū), 1 − uū); u = n1 + in2

1 + n3
. (11)

Then we get for the above Lagrangian (9)

Hµν = 2i
uµūν − uνūµ

(1 + uū)2
(12)

and

L = 1

2
∂µξ∂µξ − 2 e−2κξ (uµūµ)2 − (uµ)2(ūν)

2

(1 + uū)4
. (13)

3
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This Lagrangian is integrable in the sense that it has infinitely many symmetries and infinitely
many conserved currents. Indeed, it is of the type c of table 3 of [12] and, therefore, has the
infinitely many conserved currents

J G̃
µ = iG̃a(uπµ − ūπ̄µ) (14)

where

πµ ≡ ∂L
∂uµ

, π̄µ ≡ ∂L
∂ūµ

(15)

are the usual canonical four-momenta and G̃ = G̃(a) (a ≡ uū) is an arbitrary real function of
its argument.

Remark. The Lagrangian (13) has, in fact, an even larger symmetry. It belongs to a rather
special class which has not been classified explicitly in [12]. Indeed, this Lagrangian belongs
both to type c and to type b of table 3 of [12], i.e., it depends on the target space variable
a ≡ uū solely via the target space metric function g,

L = F(g2c, d) (16)

where

g ≡ e−κξ (1 + a)−2 a ≡ uū (17)

c ≡ (uµūµ)2 − (uµ)2(ūν)
2, d ≡ ξµξµ. (18)

Further, the metric function is of the product form

g = g(1)(a)g(2)(ξ). (19)

As a consequence, the Lagrangian (13) has the infinitely many conserved currents

J G
µ = i

g(1)(a)
[Gūπµ − Guπ̄µ] (20)

where G = G(u, ū) is an arbitrary real function of its arguments. From a geometric point
of view the existence of these conserved currents is quite obvious, because they are just the
Noether currents of the area-preserving diffeomorphisms on the target two-sphere which is
spanned by the complex field u, and these are symmetries of the above Lagrangian; see, e.g.,
[13–16].

3. Static solutions

The energy functional for static configurations which corresponds to the Lagrangian (13) reads

E =
∫

d3r
(

1

2
∇ξ · ∇ξ + 2 e−2κξ (∇u · ∇ū)2 − (∇u)2(∇ū)2

(1 + uū)4

)
. (21)

Momentarily, we want to switch to the more general class of energy functionals

E =
∫

d3r
(

1

2
∇ξ · ∇ξ + 2G(1)(a)G(2)(ξ)[(∇u · ∇ū)2 − (∇u)2(∇ū)2]

)
(22)

because this general class has exactly the same integrability properties and may be solved in
exactly the same way. Later we will specialize to the case

g(1)(a) = (1 + a)−2, G(1) ≡ (g(1))2

g(2)(ξ) = e−κξ , G(2) ≡ (g(2))2
(23)

when it is needed.

4
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First of all, let us observe that the energy functional (22) is the sum of a term which is
quadratic in first derivatives and another term which is quartic. Therefore, the Derrick criterion
does not rule out the existence of static finite energy solutions, and we will indeed find that
they exist. The Euler–Lagrange equation for the variation w.r.t. ū is

∇ · (g(1)(a)G(2)(ξ) �K) = 0 (24)

where

�K ≡ (∇u · ∇ū)∇u − (∇u)2∇ū (25)

(observe the appearance of g(1) ≡
√

G(1) in the equation). The Euler–Lagrange equation for
the variation w.r.t. ξ is

	ξ = 2G(1)G
(2)
ξ [(∇u · ∇ū)2 − (∇u)2(∇ū)2]. (26)

Next, we introduce spherical polar coordinates �r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ)

and the corresponding frame of unit basis vectors (êr , êθ , êϕ), and we employ the ansatz

ξ = ξ(r), u = v(θ) eimϕ. (27)

Then the Euler–Lagrange equation (24) simplifies to

∇ · (g(1)(a) �K) = 0 (28)

because ∇ξ · �K = 0. With

∇u = 1

r
eimϕ

(
vθ êθ +

imv

sin θ
êϕ

)
(29)

and

�K = 2

r3
eimϕ

(
m2v2vθ

sin2 θ
êθ +

imvv2
θ

sin θ
êϕ

)
(30)

and using that g(1)(a(θ)) is a function of θ only, we find

∇ · (g(1)(a) �K) = 2m2 eimϕ

r4 sin θ
∂θ

(
g(1)vvθ

sin θ

)
≡ 0 (31)

and, therefore, the first trivial integral

g(1)vvθ

sin θ
= µ = const.. (32)

The further evaluation depends on the explicit form of g(1). Choosing g(1) = (1 + a)−2 =
(1 + v2)−2 we get

Vθ

(1 + V )2
= µ sin θ V ≡ v2 (33)

and the solution

V = 1 − µ cos θ + λ

µ cos θ − λ
(34)

where λ and µ are the two integration constants. The integration constants are fixed by the
requirement that u should be a genuine map S2 → S2. This requires that the modulus v of u
should cover the whole positive real semiaxis, i.e.,

V (0) = 0, V (π) = ∞. (35)

This leads to

λ = − 1
2 , µ = 1

4 (36)
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and to

V = 1 − cos θ

1 + cos θ
, u = tan

θ

2
eimϕ. (37)

Indeed, the corresponding u describes a map S2 → S2 with the winding number m. The
resulting field strength Hjk just describes the abelian magnetic monopole with charge m.
Indeed, for the hodge dual vector

Hi = εijkHkj (38)

we get

�H = m

r2
êr . (39)

The magnetic charge m ∈ Z is quantized by the topological nature of u.
In order to solve the Euler–Lagrange equation (26), we first need the expression

(∇u · ∇ū)2 − (∇u)2(∇ū)2 = 4m2v2v2
θ

r4 sin2 θ
(40)

for the ansatz (27). We find for the Euler–Lagrange equation (26)

1

r2
∂r(r

2∂rξ) = 8m2v2v2
θ

r4 sin2 θ
(g(1))2G

(2)
ξ = 8m2µ2

r4
G

(2)
ξ (41)

where we used the first integral (32). With the new variable s = r−1 we get

ξss = 8m2µ2G
(2)
ξ (42)

and, upon multiplication with ξs , the first integral

ξ 2
s = 16m2µ2G(2) + λ̃ (43)

where λ̃ is an integration constant. This expression may easily be integrated, after taking the
square root, and results in

s + s0 =
∫

dξ√
16m2µ2G(2) + λ̃

, (44)

and s0 is another integration constant. For a further evaluation, one has to choose an explicit
function for G(2). Choosing G(2) = e−2κξ , and µ = (1/4), we get

s + s0 =
∫

dξ√
m2 e−2κξ + λ̃

. (45)

For finite energy solutions one has to choose λ̃ = 0, in which case the integral is trivial and
has the solution

s + s0 = eκξ

κ|m| ⇒ ξ = 1

κ
ln[|m|κ(s + s0)]. (46)

For a further evaluation, we have to impose boundary conditions. We require that ξ covers the
whole positive real semi-axis which implies that

ξ(s = 0) = 0, ξ(s = ∞) = ∞ ⇒ s0 = 1

κ|m| (47)

and, therefore

ξ = 1

κ
ln[|m|κs + 1]. (48)

6
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These solutions are precisely the limiting solutions (in the limit where the number of nodes of
a certain ansatz function in the numerical analysis goes to infinity) which have been found in
[2] (for m = 1) and in [3] (for general m).

For the energy we find (remember s ≡ r−1)

E =
∫

d3r
(

1

2
∇ξ · ∇ξ + 2 e−2κξ (∇u · ∇ū)2 − (∇u)2(∇ū)2

(1 + uū)4

)

= 1

2

∫
d3r

(
ξ 2
r +

m2

r4
e−2κξ

)

= 1

2
4π

∫
drr2

(
m2

(|m|κr + r2)2
+

m2

r4

1

(|m|κr−1 + 1)2

)

= 4πm2
∫

dr

(|m|κ + r)2
= 4π |m|

κ
. (49)

Therefore, the energy is linear in the topological charge, as was already observed in [3]. This
gives rise to the question whether there exists a Bogomolny-type bound in the integrable
submodel. And that is indeed the case, as we shall see in the following section.

4. The Bogomolny bound

We introduce the vector

�H = 2i
(∇u) × (∇ū)

(1 + uū)2
= 1

2
εabcna(∇nb) × (∇nc) (50)

and express the energy functional like

E = 1

2

∫
d3r[(∇ξ)2 + G(2)(ξ) �H 2]

= 1

2

∫
d3r(∇ξ − g(2) �H)2 +

∫
d3rg(2)∇ξ · �H

�
∫

d3rg(2)∇ξ · �H ≡ EBog. (51)

Therefore, the Bogomolny equation is

∇ξ − g(2) �H = 0. (52)

We now show that our solutions (37), (48) for the ansatz (27) obey this Bogomolny equation.
For the ansatz we have ∇ξ = ξr êr and

�H = 4m

r2 sin θ

vvθ

(1 + v2)2
êr = 4m

r2

g(1)vvθ

sin θ
êr = m

r2
êr (53)

where we used (32) and µ−1 = 4; see (36). The Bogomolny equation now becomes

ξr = m

r2
g(2) (54)

or, after the variable change s = r−1 and squaring of the resulting expression,

ξ 2
s = m2G(2) (55)

which is exactly the first integral (43) for the special choice λ̃ = 0 of the integration constant
λ̃. This is, of course, consistent with our remark that finite energy solutions require λ̃ = 0. In
short, the static solutions of the last section indeed obey the Bogomolny equation (52).

7
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It remains to evaluate the Bogomolny energy in the Bogomolny inequality (51). We get

EBog =
∫

d3rg(2)∇ξ · �H =
∫

d3r∇g̃ · �H (56)

where g̃ obeys

g̃ξ = g(2)(ξ) (57)

Specifically, for our model g(2) = e−κξ and, therefore,

EBog = − 1

κ

∫
d3r(∇e−κξ ) · �H. (58)

This we want to compare now with an expression for the winding number Q of a map R
3
0 → S3,

where R
3
0 is one-point compactified Euclidean space. A useful expression for our purpose is

(see, e.g., [17], p 24, equation (1.37))

Q = − 1

4π2

∫
d3r sin2 
(∇
) · εabcna(∇nb) × (∇nc)

= − 1

2π2

∫
d3r sin2 
(∇
) · �H. (59)

Here, if the unit target space three-sphere is spanned by a unit four-vector Xα, α = 1, . . . , 4,
then the meaning of the target space coordinates na,
 is

Xa = na sin 
, a = 1, 2, 3, X4 = cos 
, (60)

and the compactification condition may be chosen, e.g.,

lim
r→∞ 
 = π, (61)

which means that infinity is mapped to the south pole of the three-sphere. Comparing the two
expressions we identify

g(2) ≡ e−κξ = 1

π

(

 − 1

2
sin 2


)
⇒ ∇g(2) = 2

π
sin2 
∇
 (62)

and the compactification condition becomes

lim
r→∞ g(2) = 1 (63)

which is precisely the boundary condition ξ(r = ∞) = ∞; see equation (47).
Therefore, we find

EBog = 4π

κ
Q (64)

and the Bogomolny energy may indeed be expressed by a topological charge. In the case
of our static solutions of section 3 it is the field u which describes a map S2 → S2 with
winding number |m| and, therefore, provides the nontrivial winding number Q = |m|. With
this identification, expression (49) for the energies of the static configurations is exactly equal
to the Bogomolny energy, which we wanted to prove.

5. The more general system

We now want to study the case of the more general gauge field (7) with Cµ �= 0. The
Yang–Mills dilaton Lagrangian then reduces to

L = 1
4

(
2∂µξ∂µξ − e−2κξ F̂ µνF̂µν

)
, (65)

F̂µν ≡ Fµν − Hµν, (66)

where

Fµν = ∂µCν − ∂νCµ (67)

is the field strength of the abelian gauge field Cµ and Hµν is defined in (12).

8
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5.1. General remarks

It may appear from expression (65) that the system with Cµ �= 0 is equivalent to the system
with Cµ = 0 and may be described by simply replacing Hµν by F̂µν , but this is not true. The
important point here is that Hµν as an antisymmetric 4×4 matrix is of second rank. Therefore,
if Hµν is interpreted as an electromagnetic field tensor, it corresponds to fields such that the
electric and magnetic fields are perpendicular, �E · �B = 0 (the so-called ‘radiation fields’). On
the other hand, no condition is imposed on the abelian gauge field Cµ; therefore Fµν generically
is a non-degenerate fourth rank matrix. Observe that one condition �E · �B = 0 is sufficient to
reduce from a fourth rank matrix to a second rank one. The reason is that the eigenvalues of an
antisymmetric matrix always come in pairs ±iλ, so one rank-reducing condition always sets
two eigenvalues equal to zero and reduces the rank by two. As a consequence, any radiation
field may be locally described by a tensor Hµν . Globally, the set of radiation fields that can
be described by a tensor Hµν is more restricted, at least as long as one requires that na is a
globally well-defined map from R

3 to S2 (see e.g. [18]).
It is, however, possible to remove the n-term in the expression of the gauge potential by a

gauge transformation. Indeed, choose the unit vector field ma , then the gauge transformation

U =
√

1 + cos γ

2
− i√

2(1 + cos γ )
αaσ a (68)

αa ≡ εabcnbmc, cos γ = nama (69)

transforms the unit vector field na into the new unit vector field ma (more precisely, the
matrix n ≡ naσ a into the matrix m ≡ maσa). If we now choose ma = const., then the
n-term is absent in the gauge-transformed gauge potential, because ma

µ = 0. Specifically, for
ma = êa

3 ≡ δa3 = (0, 0, 1), the corresponding gauge transformation (68) is

U =
√

1 + n3

2
− i√

2(1 + n3)
(n2σ 1 − n1σ 2). (70)

This expression is not well defined at na = (0, 0,−1) (its value depends on the order in which
the limit n1 → 0, n2 → 0 is performed). A topologically nontrivial na covers the whole
target space S2 and, therefore, also the value (0, 0,−1). The corresponding U is, therefore,
singular. If the field strength Hµν corresponding to na is regular, however, there always exists a
further gauge transformation V = exp(iβσ 3) (for some appropriate β not expressible in terms
of na only) which leaves êa

3 = (0, 0, 1) invariant, such that the composition V U is regular
everywhere. (Observe that this does not happen for the solutions of section 3, because there
the field strength is the singular magnetic monopole field.)

Next, we want to calculate how a gauge potential transforms under this gauge
transformation. If we define a general Lie-algebra valued gauge potential as

Aµ = 1
2Aa

µσa (71)

then this gauge potential transforms like

Aµ → UAµU † − iU∂µU † (72)

(the factor −i in front of the inhomogeneous term is due to the fact that we use the Hermitian
basis (1/2)σ a in the Lie algebra instead of the anti-Hermitian ta = −(i/2)σ a). Specifically,
if we choose for the untransformed gauge potential

Aa
µ = εabcnb

µnc (73)

9
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consisting only of the n-term, and the transformation (70) for the gauge transformation, then
the transformed gauge potential is

A′a
µ = n2

µn1 − n1
µn2

1 + n3
êa

3 (74)

that is, only the Cµ-term is nonzero, and the transformed unit vector is ma = êa
3. If this

gauge potential is singular (because na is topologically nontrivial) but leads to a non-singular
field strength, then there always exists a further gauge transformation (the above-mentioned
V ) which transforms A′a

µ to a regular gauge potential. This transformation acts as an abelian
gauge transformation on the abelian gauge field Cµ, i.e.

V :
n2

µn1 − n1
µn2

1 + n3
→ n2

µn1 − n1
µn2

1 + n3
+ βµ. (75)

Now we want to discuss the conservation laws of the Lagrangian (65). For this purpose
it is useful to rewrite it like (remember c ≡ (uµūµ)2 − (uµ)2(ūν)

2)

L = 1

2
∂µξ∂µξ − e−2κξ

(
2c

(1 + uū)4
− i

uµūν − uνūµ

(1 + uū)2
Fµν +

1

4
FµνFµν

)
. (76)

This Lagrangian still has the infinitely many conserved currents (20), because the term
(1+uū)−2(uµūν −uνūµ) is still invariant under the corresponding target space transformations
δu = i(1 + uū)2Gū, etc, as may be checked easily. But the above Lagrangian has even more
conserved currents, as we demonstrate now. For this purpose, we rewrite it in the slightly
more general form

L = 1
2∂µξ∂µξ − G(2)(ξ)

(
2G(1)(a)c − ig(1)(a)(uµūν − uνūµ)Fµν + 1

4FµνFµν

)
(77)

like in (22), (remember G(1) ≡ (g(1))2), and calculate the following Euler–Lagrange equations,
for ū

2∂µ(G(2)g(1)Kµ) + ig(1)∂µ(G(2)F µνuν) = 0, (78)

for ξ ,

ξµ
µ + G

(2)
ξ

(
2G(1)(a)c − ig(1)(a)(uµūν − uνūµ)Fµν + 1

4FµνFµν

) = 0, (79)

for Cµ,

∂µ[G(2)(Fµν − 2ig(1)(uµūν − uνūµ))] = 0. (80)

It follows easily from the last field equation that the currents

jH
µ = H(ξ)G(2)(ξ)(Fµν − 2ig(1)(uµūν − uνūµ))ξ ν (81)

are conserved, where H(ξ) is an arbitrary real function of its argument. These currents are
completely analogous to the additional conserved currents which were found for abelian gauge
theories in [19]; see equations (61)–(63) of that paper.

Remark. Setting u = 0 and observing that Fµν is a general abelian gauge field strength, it
follows that the general Maxwell dilaton system has infinitely many conserved currents.

5.2. Further solutions

A first possibility to construct further solutions is provided by just adding a pure gauge C-term,
i.e. a term (∂µλ)na to a given solution. This is a trivial modification from the point of view
of the integrable submodel, because its Lagrangian only depends on the field strength Fµν

(see (65), but it is a nontrivial modification from the point of view of the full gauge potential

10
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(with non-zero W -term), because the Lagrangian of the full theory depends on the abelian
gauge potential Cµ (and not only on the abelian field strength). The term (∂µλ)na can
be removed by a nonabelian gauge transformation (with gauge parameter αa = λna) for a
general gauge potential, but this transformation acts nontrivially on the W -term and so just
transfers the physical effect of (∂µλ)na from the C-term to the W -term.

Specifically, by choosing λ = qx4 (here q is a constant, x4 is the Euclidean ‘time’, and
we momentarily switch to Euclidean spacetime conventions to be consistent with [20]), i.e.,
by adding a C-term with Cµ = qδµ4 to the monopole-type solutions of section 3, we are able
to reproduce the special analytic solution of [20] (they are called ‘dyonic-type generalizations
of the monopole solutions’ in that paper; see their equation (17); for the constant q they use
the symbol ū, which we do not employ here for obvious reasons). Obviously, these solutions
have the same energies and fulfill the same Bogomolny bounds as the solutions of section 3.

We may try to find further solutions by solving the full system of field equations (78)–(80).
We assume that no field variable depends on time (static solutions), and we further assume
that Cµ only describes an electric field (i.e., F0j = Ej , Fjk = 0; observe that Hµν → Hjk is
automatically purely magnetic for static u). Under these assumptions, the second term in the
field equation for ū, equation (78), does not contribute, and we get equation (24) of section 3.
Also the term (uµūν − uνūµ)Fµν in equation (79) is zero under these assumptions. Now we
further restrict to

u = v(θ) eimϕ, ξ = ξ(r), �E = E(r)êr (82)

and find for u exactly the same solutions as in section 3 (i.e., the first integral (32) for general
g(1), and the generalized hedge-hogs (37) for g(1) = (1 + uū)−2). For these solutions for u,
the second term in equation (80) is zero, and equation (80) simplifies to

∇(G(2)E(r)êr ) = 0 (83)

with the solution

E(r) = q

4πr2G(2)
(84)

where q is the constant electrical charge. Finally, equation (79) leads to the first integral

ξ 2
s = 16m2µ2G(2) +

q2

4π2G(2)
+ λ̃ (85)

where s ≡ (1/r) and the calculation is completely analogous to the calculation in section 3.
For a further evaluation we have to specify G(2)(ξ). For the dilaton case G(2) = exp(−2κξ)

and the generalized hedge-hogs for u we get (remember µ−1 = 4)

ξ 2
s = m2 e−2κξ +

q2

4π2
e2κξ + λ̃. (86)

Unfortunately, there does not exist a physically acceptable (finite energy) solution if both m
and q are different from zero. Choosing q = 0 we recover the solutions of section 3, but
choosing m = 0, we find different, purely electric solutions. Finite energy requires again
λ̃ = 0, and we get

ξ 2
s = q2

4π2
e2κξ . (87)

Comparing with the equation

ξ 2
s = m2 e−2κξ (88)

11
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for the magnetic solutions of section 3, we see that we recover the electric equation by the
replacements m → (q/2π) and ξ → −ξ , therefore the electric solution for ξ is

ξ = − 1

κ
ln

( |q|
2π

κs + 1

)
. (89)

Also the energy of the electric solution (84), (89) is the same as the energy of the magnetic
solution (49) after the replacement m → (q/2π). The electric solutions are also Bogomolny
solutions, and the Bogomolny bound may be derived exactly like in section 4, where one only
has to replace the ‘magnetic’ vector �H by the electric vector �E = −∇C0.

Remark. A Bogomolny bound does not exist when both electric and magnetic vectors are
present.

Remark. The electric solution (84) and (89) has been derived in [2] from the simplest magnetic
solution in a slightly different way, by employing the nontrivial duality symmetry

Fa
µν → e−2κξ F̃ a

µν, ξ → −ξ (90)

which is present for the Yang–Mills dilaton theory (here F̃ a
µν is the Hodge dual of the nonabelian

field strength Fa
µν).

5.3. Further generalizations

Finally, let us briefly discuss some generalizations of the integrable Lagrangians discussed so
far, which are still integrable (have infinitely many symmetries) and allow for the ansatz (27)
in spherical polar coordinates, and for trivial first integrals of the resulting ODEs. One class
of models is given by the Lagrangians (with non-polynomial kinetic terms)

L = 1
2 (ξµξµ)α − 2G(2)(ξ)G(1)(a)((uµūµ)2 − (uµ)2(ūν)

2)β (91)

where α and β are parameters. This model has the infinitely many conserved currents
(analogously to the currents (20))

J G
µ = i(G(1))−

β

2 [Gūπµ − Guπ̄µ] (92)

where G = G(u, ū) is an arbitrary real function of its arguments. Further, the separation
of variables ansatz (27) is compatible with the Euler–Lagrange equations, and the resulting
ODEs are solvable by quadratures. Whether there exist finite energy static solutions depends
both on the choice of the parameters α and β (where Derrick’s theorem provides a selection
criterion) and on the functions G(1) and G(2). In the special case α = 3

2 , β = 3
4 , the energy

functional for static solutions enjoys an enhanced base space symmetry in R
3 (conformal

symmetry instead of just Galilean symmetry) and, therefore, a separation of variables ansatz
in toroidal coordinates is compatible with the field equations and leads to static solutions, quite
analogously to the case of the model of Aratyn, Ferreira and Zimerman [14, 21, 22].

Another generalization is given by

L = 1
2∂µξ∂µξ − 2G(2)(ξ)2G(1)(a)c

− iH(2)(ξ)H (1)(a)(uµūν − uνūµ)Fµν + 1
4K(2)(ξ)FµνFµν. (93)

If G(1) = (H (1))2, then this Lagrangian has the infinitely many conserved currents (20)); if
this condition does not hold, only the smaller set of currents (14) is conserved. Further, the
currents

jH
µ = H(ξ)(K(2)(ξ)Fµν − 2iH(1)H (2)(uµūν − uνūµ))ξ ν (94)

12
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are conserved, where H(ξ) is an arbitrary real function of its argument. The separation of
variable ansatz (82) for static solutions and a purely electric Fµν is again compatible with
the Euler–Lagrange equations, and the resulting ODEs are again solvable by quadratures.
The existence of finite energy static solutions depends again on the choice of the arbitrary
functions. For instance, there exist infinitely many solutions with both non-zero magnetic and
electric fields for the following choice,

G(1) = (1 + a)−4, G(2) = (K(2))−1 = e−2κξ . (95)

Here, the only difference to the Yang–Mills dilaton case is that (K(2))−1 = e−2κξ instead of
K(2) = e−2κξ (the values for H(1), H (2) are irrelevant because the term multiplying them does
not contribute to purely magnetic Hµν and purely electric Fµν).

6. Discussion

It has been one of the initial motivations of this investigation to shed more light on previous
results on the Yang–Mills dilaton theory. In this respect, our first result is the simple
observation that Yang–Mills dilaton theory contains an integrable subsystem, i.e., a subsystem
with infinitely many target space symmetries and infinitely many conserved currents, and
this subsystem is non-empty in the sense that it contains nontrivial (e.g., static finite energy)
solutions. This fact is also intimately related to our second result, namely a possible explanation
for the existence of infinitely many static analytic solutions. In this context, it is interesting to
note the role which is played by the symmetries of the integrable subsystem. The consistency
of the ansatz (27) in spherical polar coordinates is explained by the base space symmetries
of the model (essentially by rotational symmetry). On the other hand, the solvability of the
resulting ODEs by simple quadratures might be related to the integrability of the model,
i.e., to the existence of infinitely many target space symmetries and conservation laws. The
conjecture that solvability follows from integrability is supported both by the corresponding,
rigorous results in lower dimensions and by the fact that it is true in all known examples
of higher-dimensional integrable theories. It holds, e.g., for the model of Aratyn, Ferreira
and Zimerman [21, 22] where the base space symmetries allow for an ansatz in toroidal
coordinates such that the resulting ODEs are solvable by quadratures, or for a class of models
similar to that of this paper, but with non-polynomial kinetic energy expressions; see [23]. A
more rigorous mathematical analysis of the relation between integrability and solvability for
integrable theories in higher dimensions is still missing and would be highly desirable.

At this point a word of caution may be appropriate. Although the relation between
infinitely many conservation laws and (at least classical) solvability may carry over from 1+1
to higher dimensions, this is certainly not the case for some other features of 1+1 dimensional
integrable theories. In 1+1 dimensional integrable theories one has, for instance, the possibility
of conserved charges of arbitrary spin which, in turn, lead to the factorizability of the S-matrix.
This cannot happen in higher dimensions due to the Coleman–Mandula theorem [24]. Also the
transition from classical to quantum integrable systems will most likely be more complicated
in higher dimensions. The algebra of the infinitely many conserved charges or conserved
currents, as exposed, e.g. in [12, 15, 16] for certain classes of theories, may, nevertheless, be
a good starting point for the quantization. This issue is, however, beyond the scope of the
present paper.

Our third result is the explanation of the fact that the energies of our static solutions grow
linearly with the topological charge. This is explained by the Bogomolny bound (51) for the
integrable submodel and by the observation that the static solutions saturate this bound.
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Remark. For the simplest solution with m = 1, a Bogomolny-type bound was given in [2].
However, this Bogomolny bound holds for a certain subsector of the spherically symmetric
ansatz of the Yang–Mills dilaton system; therefore it only applies to spherically symmetric
solutions. On the other hand, our Bogomolny bound (51) holds completely generally for the
integrable subsystem and does not require a certain symmetry of the solution.

In section 5 we found similar results for a slightly more general Lagrangian (i.e. for a slightly
less restricted gauge potential) still maintaining integrability and solvability. It is interesting
that both finite energy solutions and Bogomolny bounds seem to exist only for purely magnetic
or purely electric gauge fields, but not for the mixed case. Further, we presented some more
general Lagrangians, no longer related to the Yang–Mills dilaton system, which are still both
integrable and solvable.

Finally let us point out that, apart from shedding more light on some issues of Yang–Mills
dilaton theory, our investigation has an additional interest. Observe that we have used the
decomposition of Cho, Faddeev, Niemi and Shabanov—which originally was mainly motivated
by the description of the low-energy degrees of freedom of Yang–Mills theory—for a different
purpose, namely for the exposure of an intergrable subsector within this theory. Here, it is
important to note that the target space transformations—which are symmetry transformations
in the submodel—are very simple in terms of the decomposition fields. They are essentially
area-preserving diffeomorphisms of the target space two-sphere spanned by the unit vector
na (or by the complex field u); therefore they are just geometric transformations. On the
other hand, in terms of the original Yang–Mills field, they certainly would be rather nontrivial,
nonlocal transformations, which would be quite difficult to detect.

This immediately raises the question of generalizations and further applications. First of
all, we believe that most likely our investigation carries over without problems to the case of the
Einstein–Yang–Mills dilaton system (that is, to an appropriately chosen subsystem thereof),
given the striking similarity between the two theories found, e.g. in [2]. Another interesting
question is whether the CFNS decomposition or a similar decomposition can be used, e.g.,
to unravel an integrable subsector to which the sector of self-dual solutions of Yang–Mills
theory belongs. These problems are under investigation. In any case, it seems that the use of
nonlocal field transformations is a useful instrument for the discovery of nontrivial symmetries
and integrable subsectors of nonlinear field theories.
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Appendix

Here we want to prove that inserting the CFNS decomposition (2) directly into the Yang–Mills
dilaton action and deriving the Euler–Lagrange equations with respect to the decomposition
fields gives the same field equations as those that are obtained by inserting the decomposition
into the Euler–Lagrange equations of the original Yang–Mills dilaton theory. For the case of
pure SU (2) Yang–Mills theory this equivalence of the two different ways to derive the field
equations was already proven in [7], but as we study a different theory in our paper and use
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a slightly different parametrization for the decomposition, we provide the proof here for the
convenience of the reader.

The dilaton field is not changed under the decomposition; therefore the equivalence
obviously holds for the dilaton field equation. So we focus on the Yang–Mills equation in the
following. In terms of the Yang–Mills gauge potential Aa

µ, the corresponding Euler–Lagrange
equation reads

e−2κξ εabcAb
νF

cνλ + ∂ν(e
−2κξF aνλ) = 0. (A.1)

In a first step we want to evaluate this expression for the gauge invariant abelian projection,
that is, the restriction (7) with both na and Cµ nonzero. Inserting this decomposition we easily
find the equation

na∂µ(e−2κξ F̂ µν) = 0 (A.2)

(where F̂ µν is defined in (66)), and the factor of na in front of the expression is obviously
irrelevant and may be omitted. This now has to be compared with equations (78) and (80) for
the special case G(2) = e−2κξ , g(1) = (1 + uū)−2. Equation (80) may be written like

∂µ(e−2κξ F̂ µν) = 0 (A.3)

and is, therefore, identical to the above equation (A.2). Equation (78) may be written like

uν∂µ(e−2κξ F̂ µν) = 0 (A.4)

together with its complex conjugate, and is, therefore, just the projection of equation (A.2)
into the directions of uµ and ūµ. Obviously, equations (A.2) are completely equivalent to
equations (A.3) and (A.4).

Finally, let us discuss what happens when we further restrict to (8), that is, we set Cµ = 0,
too. This produces a small complication that is related to the fact that this latter restriction is
no longer gauge invariant. Inserting this restriction into the Yang–Mills equation (A.1) simply
gives

na∂µ(e−2κξHµν) = 0 (A.5)

whereas variation of the Lagrangian (13) w.r.t. ū gives, in complete analogy with (A.4)

uν∂µ(e−2κξHµν) = 0. (A.6)

Together with its complex conjugate, this seems to provide only two equations (the projections
into the directions of uµ and ūµ) compared to the four equations (A.5). This apparent mismatch
is, however, easily understood and is related to the fact that the restriction to Cµ = 0 is no
longer gauge invariant. The original Yang–Mills equation is gauge covariant and leads, after
inserting the restricted decomposition, to the gauge covariant field equations (A.5). Because
of the abelian character of the gauge field, these equations are in fact gauge invariant after
omission of the irrelevant factor na . On the other hand, setting Cµ = 0 already in the
Lagrangian involves a gauge choice, and the resulting field equations (A.6) hold only in this
gauge. A gauge variation of these field equations automatically switches on the two missing
components. This may be seen especially easily when the Lagrangian of the submodel is
varied w.r.t. na instead of u, because na has a simple behavior under gauge transformations.
Variation of the Lagrangian (9) w.r.t. na leads to

εabcnb
µnc∂λ(e

−2κξHµλ) = 0 (A.7)

which is identical to equation (A.6) when expressed in terms of na instead of u. Again,
equation (A.7) only consists of two components. Further, equation (A.7) consists of the gauge
invariant factor

∂λ(e
−2κξHµλ) (A.8)
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and the gauge dependent prefactor

εabcnb
µnc. (A.9)

Under a gauge variation δna = εabcnbαc this factor changes according to

δ
(
εabcnb

µnc
) = (δab − nanb)αb

µ +
(
nanb

µ − na
µnb

)
αb. (A.10)

As the gauge variation αa(x) is completely arbitrary, already the first term proportional to
αa

µ contains, in general, projections onto the two missing components of the Yang–Mills field
equations.
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